Research/Etc_Research2007. 1. 8. 10:07

## Matlab Integral 명령어

Q = QUAD(FUN,A,B) tries to approximate the integral of function
FUN from A to B to within an error of 1.e-6 using recursive
accept a vector argument X and return a vector result Y, the
integrand evaluated at each element of X.

Q = QUAD(FUN,A,B,TOL) uses an absolute error tolerance of TOL
instead of the default, which is 1.e-6.  Larger values of TOL
result in fewer function evaluations and faster computation,
but less accurate results.  The QUAD function in MATLAB 5.3 used
a less reliable algorithm and a default tolerance of 1.e-3.

[Q,FCNT] = QUAD(...) returns the number of function evaluations.

QUAD(FUN,A,B,TOL,TRACE) with non-zero TRACE shows the values
of [fcnt a b-a Q] during the recursion.

arguments P1, P2, ... to be passed directly to function FUN,
FUN(X,P1,P2,...).  Pass empty matrices for TOL or TRACE to
use the default values.

Use array operators .*, ./ and .^ in the definition of FUN
so that it can be evaluated with a vector argument.

Function QUADL may be more efficient with high accuracies
and smooth integrands.

Example:
FUN can be specified as:

An anonymous function:
F = @(x) 1./(x.^3-2*x-5);

A function handle:
where myfun.m is an M-file:
function y = myfun(x)
y = 1./(x.^3-2*x-5);

Class support for inputs A, B, and the output of FUN:
float: double, single

Reference page in Help browser

#### 'Research > Etc_Research' 카테고리의 다른 글

 Monte Carlo Method  (0) 2007.01.08 2007.01.08 2007.01.08 2007.01.08 2007.01.07 2007.01.07

이 글은 새로운 정보가 추가될 때마다 업데이트됩니다. 추천으로 아래 숫자에 1을 더해보세요. :)
1.  Koog